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Choice of an Estimate of Genetic Variance
from Twin Data

JOE C. CHRISTIAN,' KE WON KANG,' AND JAMES A. NORTON, JR.2

INTRODUCTION
Twins are frequently used to partition variance of quantitative traits into
environmental and genetic components. There is, however, little agreement
about how to analyze and present twin data, with some authors constructing
heritability estimates and others estimating genetic variance.
The estimate of genetic variance obtained from the twin model is a complex

fraction of total population genetic variance: the minimum set of assumptions
required for estimating this fraction is explored and the properties of several
estimates discussed with the hope that a more rational system of analysis and
presentation of twin data may be developed.

The Proposed Model
Table 1 summarizes a general model for estimation of genetic variance using

twin data. This model is taken from Haseman and Elston [1], who after
Kempthorne [2] used it to estimate total genetic variance from twin data when
there are negligible biases in the sampling of twins and negligible effects due to
nonrandom mating. Using this model, the four mean squares are independent, and
from the expected mean squares we find the following equality:

E(MAMz - MADZ) E(MIVDZ MWMZ) - 1/2 Ora2 + 3/4 0re2
(1)

+ (1J f) a%2 + 2 (age Oage) + (C.&z-CDZ).
One possible test to determine if this model is valid would be an F' test [3]
comparing (MAMZ-MADZ) with (MWDz-MMWmZ). However, Cochran [3] ad-
vises against using the F' test where a negative sign occurs in the combination
of mean squares. We can obtain an equivalent hypothesis by noting that

E(MAMZ + MWMz) = E(MADZ + MWDZ)
(2)

20ea + 2o-d2 + 2OT,2 + 20e2 + 4oge.
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GENETIC VARIANCE AND TWIN DATA

TABLE 1

ANALYSIS OF VARIANCE MODEL FOR TWIN STUDIES

Source of Mean
Variation df Squares Expected Value of Mean Square

Monozygotic
twins:
Among

pairs . nMz- 1 MAMZ 20a 2 + 2 (d2 + 2o-i2 + ae2 + 40-ge + CMZ
Within

pairs .n.Mz MWMZ7e2 Cmz
Dizygotic
twins:
Among

pairs nDZ - 1 MADZ 3/2 0a2 + 5/4 od2 + (1 + f) o-,2 + U-e2 + 2 ((rge + 0-*ge) + CDZ
Within

pairs . DZ MWDZ 1/2 0a2 + 3/40*d2 + (1 f) 0-i2+ 0r2 + 2 (ge-0* ge) -CDZ

NOTE.nMz = number of monozygotic twin pairs; nDz = number of dizygotic twin pairs; df = degrees of free-
dom; oa2 = variance component due to additive genetic effects; od2 = variance component due to dominant genetic
effects; i2 = variance component due to epistatic genetic effects; ae2 = variance component due to environ-
mental effects; oge = covariance between genetic and environmental effects in the same individual; abbge = co-
variance between genetic effects on one member of a twin pair and environmental effects on the other member of
that twin pair; CMz = covariance among environmental effects between pairs of monozygotic twins; CQZ =
covariance among environmental effects between pairs of dizygotic twins; and f = one minus the fraction of
epistatic variance manifest within dizygotic twin sets.

An F' test comparing (MAMZ + MWMZ) with (MADZ + MWDZ) could therefore be
used as a test of appropriateness of the general model. This same comparison was
proposed by Kempthorne and Osborne [2] and by Haseman and Elston [1].
Kempthorne and Osborne [2] postulated that a significant value of this ratio
would indicate different "competitive forces" for monozygotic and dizygotic (MZ
and DZ) twins. These competitive forces could be viewed as environmental vari-
ance components unique to each type of twin (oreMz2 = environmental variance
component for MZ twins; CeDZ2 - environmental variance component for DZ
twins). From the nature of these competitive forces it appears that the test should
be a two-tailed F' test:

F -(MADZ + MWDZ)/(MAMZ + MWMZ)
or (3)

F - (MAMZ + MWMZ)/(MADZ + MWDZ),
with the larger sum of mean squares as the numerator. The approximate degrees
of freedom would be computed as shown in [1] or [3], and the probability would
be twice that shown in the usual F tables. If either substantial genetic variance or
environmental variance common to both types of twins is present, the power of
this test to detect 'eAZ270-eDZ2 will be low. We therefore recommend performing
this test (3) at an increased significance level, perhaps a - 0.20.
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For data in which there is no evidence for inequality of the total variance of
MZ and DZ, at least two assumptions must be made:

0-ge C-*ge

CMZ = CDZ.

(4)

(5)
The first assumption (4) is a simplification of assumption III of Haseman

and Elston [1] which was -ge cr*ge= 0, and the second assumption (5) is
identical to their assumption IV. In table 2 the twin model is repeated applying

TABLE 2

ANALYSIS OF VARIANCE MODEL FOR TwIN STUDIES,
ASSUMING Hge 0TAge AND CMZ = CDZ = C

Source of Mean
Variation df Squares Expected Value of Mean Square

Monozygotic
twins:
Among

pairs . . M -1 MAMZ 2 ra2 + 2 od2 + 2 0i2 +0e2 + 4 age + C

Within
pairs . nMz MWMZ (e2 -C

Dizygotic
twins:
Among

pairs .. DZ-1 MADZ 3/2 Ca2 + 5/40d2 + (1 + f) Cy,2 + ae2 + 4 (Ye + C
Within

pairs nDZ MWDZ 1/2 ea2 + 3/4 0d2 + (1 f) y,2 + Ce2 - C

these two assumptions. Equation (1) now simplifies to:

E(MAMZ-MADZ) E(MWDZ-MwMz) = 1/20ra2 + 3/4o-d2 + (1 f ) 0-i2,

the fraction of genetic variance estimated by twin data - GT, say. We thus have
two independent estimates of genetic variance: an among-twin-pair estimate
(GA=7 MAMZ - MADZ) and a within-twin-pair estimate (GWT = MWDZ -
MWMZ) -

The hypothesis that twin genetic variance equals zero (GT = 0) may be tested
using two separate F ratios:

F= MWDZ/MWMZ,

F MAMZ/MADZ.

(6)
(7)

The first of these two ratios (6) would generally be the more powerful because
the among-twin-pair mean squares are often much larger than the within-twin-
pair mean squares, dwarfing the contribution of genetic variance components
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in the second F ratio. By the same reasoning G1vy would, in most cases, have a
smaller variance than GA]T
To make use of all of the data available in a single estimate of genetic variance,

it would be desirable to combine GCv1 and GAT. One possible way of combining
GWT and CAT would be a weighted average based upon the reciprocals of their
estimated variances. This estimate (GMT) would have minimum variance.
The variances of CAT and GCWT are estimated as follows [4]:

A^A (MAMZ) (MADZ)2
V(GAT) _ V(MAMZ - MADZ) - 2 _, (8)L nmz + 1 nDZ + 1-

A A F (MlVDZ)2 (MwMz)2 1
V(GWVT) V(MWDZ - MWMZ) 2

- nDZ + 2 nMz + 2 1 (9)

where V - estimated variance (for other abbreviations see table 1).
The minimum variance estimate (GCIT) is then calculated:*

A A A A AA
A GAT/V(GAT) + GIVT/V(GWT)

T 1V(GAT) + 1/V(GWT)
A A A A ^ A ( 10)
[V(GWT) ](GAT) + [V(GAT) ](GWT)

V(GAT) + V(GWT)
A A ~~~~~~~AAA

The variance of GMT could also be estimated by V(GC.IT) WA2V(GAT) +
A A

Ww2V(GIT), where

V(GWT) and___________WA = and A ^ ^ (11)
e(8AT) + V(CGT) V(AT) + V(GWT)

A

In virtually all cases, GMT would lie between G11VT and the arithmetic mean of
A A

GWT and GAT. This would occur because the among-twin-pair mean squares in all
cases have one less degree of freedom and, more important, are almost invariably
larger than the within-twin-pair mean squares. The G.1MT also has a theoretical ad-
vantage in that it is sensitive to the relative numbers of MZ and DZ twins, in
distinction to other estimates of twin genetic variance.

A~~~~~~~~
In most instances, however, GMl7 would be very close to GWT because the

among-twin-pair mean squares are usually several times greater than the within-
pair-mean squares, and it would be more difficult to test the significance of GMT
as compared to the F ratio (6) used to test significance of GWT. As a practical
matter, therefore, it would appear to be of little more than theoretical value to

"' At the suggestion of a reviewer, we verified empirically that if one modifies the matrix V
of Haseman and Elston's weighted least-squares estimation procedure [1, pp. 15-161 by putting
in the diagonals the approximate variances of the mean squares as given by Anderson and
Bancroft [4, p. 319], then the estimate of their c- 2 obtained by applying their expression (26)
(one iteration only) is exactly twice our GMT-
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calculate GMT; GWT would suffice as an estimate of genetic variance when the basic
model holds.

If the F' test (3) gives evidence that G7eMZ22 # O-eDZ22 then the basic assumptions
of the twin model are challenged and it must be modified to obtain an estimate of
genetic variance. When GeMZ2 7# OceDZ2 and we recalculate the expectations of GWT
and GAT based upon the expected mean squares in table 2, we obtain the following
equalities:

E(MAMz - MADZ) [1/2 0ra2 + 3/4 ard2 + (1 f) a-,2] + (crCMZ2 O- D2)
(12)

E(MwDz - MWMz) [1/2 (Ta2 + 3/4 (r2 + (1 - 1) ar2] + (OeDZ CreMZ2)
(13)

A A

so that whenever OYeMZ2 7 0-eDZ2, then GAT and GWT are biased by the difference
between EreMZ2 and OreDZ2.

However, as GWT and GAT are affected in opposite directions by inequality in
creMZ2 and O-eDZ2, an arithmetic mean of these two estimates is unbiased by a
difference between UreMZ2 and O2eDz2. We will call this estimate GCT because it
is identical to Falconer's [5] among-twin-pairs component estimate of genetic
variance. If 0-AMZ2 and OADZ2 denote the variance components among twin pairs
for monozygotic and dizygotic twins, respectively, it is well known that estimates
of these components are given by eAMZ2 (MAMZ - MwMz)/2 and CrADZ=
(MADZ - MWDZ)/2.

Falconer [5, p. 184] proposes the difference eTAMZ2 - ADZ2 as one estimate of
what we have called GT. Substituting from above, it is readily verified that this

A A ~~~~~~~~~~~~A
is equivalent to (GAT + GWT)/2, which is the proposed estimate GCT. Since it
involves only the among-twin-pair variance components, GCO will not be affected

A

by within-twin-pair components. The GCT is also equal to one-half the unweighted
least-squares estimate of Haseman and Elston [1]. Hjortland [6] also pointed
out that GOT is unbiased by differential environmental effects within the two
twin types.
The hypothesis E(GCT) 0 can be reduced to the hypothesis E(MAMZ +

MWDZ) = E(MADZ + MWVMZ), which avoids minus signs, as Cochran [3] recom-
mends. Thus, the significance of GCT can be tested by the ratio

F'= (MAMZ + MWDZ)/(MADZ + MWMZ), (14)

with approximate degrees of freedom calculated as in [3]. This should be a
one-tailed F' test because if genetic variance is present the expected value of the
numerator is greater than that of the denominator.*

*A Fortran program which calculates the various estimates of genetic variance and their
variances and probability levels has been developed by one of us (K. W. K.) and is available
upon request.
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DISCUSSION

Six pieces of information are available to estimate genetic variance from the
twin model, namely, the four mean squares in table 1 and the numbers of mono-
zygotic and dizygotic twins. However, two assumptions, equations (4) and (5),
are necessary, and neither can be tested using the twin model. The assumption that
CMZ = CDZ must hold because inequalities in these environmental covariance
terms bias all estimates of genetic variance. For example, if CmZ and CDZ are
positive and CMZ > CDZ, then MAMZ and MWDZ would be increased relative to
MADZ and MWmZ, respectively, inflating GAT and GWT by environmental effects.
This appears to be the most serious potential flaw in the twin model, and we
suspect that estimates of GT are often thus inflated. The remaining assumption
that -ge =0*ge is complex because genetic-environmental interaction may be
logically partitioned into two covariance components [1]: (rTe, the covariance
between genetic and environmental effects within the same individual, and 0*ge,
the covariance between the genotype of one twin and environmental effects on
the other member of the twin pair. The 0*ge will only affect members of DZ twin
pairs because there is no genetic variation between the two members of MZ sets.
The genetic makeup of one twin could be expected to influence the environment of
his cotwin either competitively or symbiotically. If there is a competitive relation-
ship, one twin may be genetically equipped to successfully compete with the
cotwin for environmental resources, causing less similarity in the twins and a
negative -*ge. In contrast, a positive aT*ge would be present when one twin is
genetically influenced to seek different environments and by association the cotwin
is exposed to these same new environments. A positive crage may result in an
environment beneficial to both (mutualism) or detrimental to both (synnecrosis).
A positive a*ge decreases variability within DZ twin sets and concomitantly
increases variability among DZ twin sets, thus explaining the minus sign in
E(MWDZ) and the plus sign in E(MADZ) (table 1). In contrast, Age contributes
positively to the within- and among-DZ mean squares as well as the among-MZ
mean square.

It is necessary, therefore, to assume that rge r-a~ge in order to estimate
genetic variance free of the influence of these covariances. For example, if 0(ge >
O**ge, then the estimate of genetic variance will be biased upward. However, this
does not seem to be a severe flaw in the model because 0Tge is evidence for genetic
effects that may be modified by the environment (e.g., treatment). On the other
hand, if crge < (r*ge it may become difficult to detect significant genetic variance.
It is doubtful whether the twin model or any other population genetic model will
detect or separate the components of genetic-environmental interaction before
specific gene effects and environmental influences are identified for study.

Falconer's [5] within-twin-pair estimate of genetic variance and Haseman and
Elston's alternative maximum-likelihood estimate of genetic variance [1, eq. (31 ) ]
are two examples of estimating genetic variance using only the within-twin-pair
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mean squares (GWT). This approach at first seems wasteful because two of the
four available mean squares and almost one-half of the available degrees of free-
dom are discarded. However, all of the estimates of genetic variance are exactly

AA ~~~A
equal (GAT, GWT, and GCT) if the sums of the within- and among-mean squares
of MZ and DZ twins are equal. In this instance GWT should suffice as an estimate
because its significance is readily tested and it has a relatively small variance.
When these sums of mean squares are significantly unequal by the F' test of
equation (3), then the basic model should be modified. We have chosen to follow
Kempthorne and Osborne [2] and postulate that the most likely causes of this
situation are "competitive forces" that are different for monozygotic and dizygotic
twins. They [2] discussed these competitive forces in detail and listed several
causes including unequal partition of the cytoplasm in the case of MZ twins and
intrauterine competition or competition between individuals after birth that
could affect MZ or DZ twins. We have considered these competitive forces as
environmental influences unique to each twin type and causing an inequality of
environmental variance components (OreMZ2 # OeDZ2). This inequality would leave
the arithmetic mean of GAT and GWT (GCT) as the only unbiased estimator of GT.
Because inequalities in areMZ2 and OeDZ2 may be relatively small compared to the
sums of mean squares of MZ and DZ twins and yet seriously affect GWT or GAT,
the most conservative approach would be to use GCT uniformly in twin studies.
Unfortunately, GCT will almost always have a larger variance than GWT and may
be overly conservative for routine use in detecting genetic variance. We would

A A A
therefore suggest combining GAT and GWT into GOT only when there is evidence
that the sums of mean squares of MZ and DZ twins are significantly different for
the trait being studied (P < .2).

For traits where the sums of mean squares of MZ and DZ twins are unequal,
further studies may lead to important information about sources of environmental
variation. For example, the study of newborn twins may determine whether the
discrepancy is due to pre- or postnatal factors.
The twin model will undoubtedly continue to be used to determine if there is

evidence for significant genetic variance and to obtain an estimate of the magni-
tude of population genetic variance. However, if estimates of dominance (crd2)
and epistasis (0o*2) are not available from other family studies, then an estimate of
population genetic variance may be obtained only by further assuming cd2= 0
and o2 - 0 and multiplying the estimates presented here by two.

SUMMARY

The general model and assumptions required to estimate genetic variance from
monozygotic (MZ) and dizygotic (DZ) twins are reviewed. Using the among-
and within-twin-pair mean squares, two independent estimates of genetic variance
are obtained: GIVT _ within-DZ mean square - within-MZ mean square and
A

GAT=- among-MZ mean square - among-DZ mean square. This model holds
only if the total mean squares of DZ and MZ twins differ only by chance fluctua-
tion. For most cases, GWT is presented as an adequate measure of genetic variance,
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but it may be refined by adjustment by a weighted mean with GAT. The weighted
mean proposed was a minimum variance estimate in which GAT and GWT were
combined according to the reciprocal of their variances.

If the total mean squares differ more than could be expected by chance, then
environmental factors were postulated as being unequal for MZ and DZ twins
and the arithmetic mean of eWT and AT must be used as an unbiased estimate
of twin genetic variance.
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